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AN ANALYSIS OF THE MAX-MIN
TEXTURE MEASURE

INTRODUCTION

In lieu of a satisfactory mathematical description of image scene content.
the U.S. Any Engineer Topographic Laboratories (ETL), Computer Sciences
Laboratory (CSL) has embarked on a heuristic approach to information ex-
traction from digital and digitized images, in response to a Defense Mapping
Agency (DMA) requirement for improving current methods of determining
Digital Landmass System (DLMS) data. This research note describes the first
of many experiments in which texture is used to specify a signature that, in turn,
is used to discriminate among a variety of candidates for classification.

The scene recognition problem under study pertains only to mapping,
charting, and geodotic data, of which the DLMS is a subset. The initial investi-
gations are concerned primarily with passive sensor records rather than with
active ones. Consideration is given to limitations imposed on any process by
(I) an inadequate mathematical model that causes false starts and ad hoc solu-
tions; (2) by the computer, which allows a local-only view of the scene rather
than a global one; and (3) by the sensor record itself, which is a two-dimensional
distorted version of a three-dimensional world wherein detail is obscured and,
in many cases, not even resolved.

The CSL approach toward scene recognition is an attempt to combine
the heretofore separate processes of elevation determination and scene classifi-
ation into a cooperative venture that uses one process to strengthen the other
and enables manual intervention through computer display devices. The approach
has evolved over the last several years as a result of in-house work and contractor
studies at ETL. An overview of the approach was first expressed in a paper
presented to the Congress of the International Federation of Surveyors, I and
later in a paper presented to the Naval Postgraduate School. 2

IMichael A. Crombic and Lawrence A. Gambino, "Digital Stereo Photogrammetry," Prepared for Congress
of the International Federation of Surveyors (FIG). Commission V, Stockholm. Sweden, June 1977.

2 Lawrene A. Gambino and Michael A. Crombie, "Manipulation and Display of Digital Topographic Data,"
Prepared for the Second Symposium on Automation Technology In Engineering Drawing. Monterrey. Calif.,
November 1979.
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One specific texture measure. namely the Max-Min measure, is evaluated
in this research note. A modification of the conventional Maximum Likelihood
Classifier, wherein multivariate normal populations are assumed, is used to classify
the texture signatures. The modified version produces the R most likely candi-
dates and R probabilities associated with the estimates rather than just the most
likely candidate. The R probabilities are introduced to a postprocessing relaxa-
tion scheme in an attempt to reduce misclassifications and false alarms.

MATHEMATICAL DESCRIPTION OF THE EXPERIMENT

Everyone seems to know what texture is as long as a precise definition is
not required. The hesitancy in producing a precise definition increases whenever
the intuitive notions of texture must be modified to describe image texture.
A variety of definitions and texture descriptors are available to choose from. 3

In the work at ('SL, image texture has been regarded as a point and/or line
pattern that is somewhat repetitive. The minute pattern of detail can be described
by measures of spatial image structure that convey the idea of varying degrees
of coarseness. If texture is regarded as the relative frequency of local extremes
in pixel intensity, then one measure is the Max-Min texture measure, which is
the number of local gray level maximums and minimums along a one-dimensional
scan.

4

Max-Min Texture Measure 0 Consider a one-dimension array of quanti-
zied density values (gray shades). Density is used rather than transmission.
because a uniform multiplicative change in light intensity will not affect a densitN
gray shade change over a uniform texture. For example. if one part of a field
is shaded and another fully illuminated by the sun, then Max-Min texture mea-
sures extracted from the two should be equal. UnLke LANI)SAT. which pro-
vides four spectral gray shades for each pixel, texture measures associated with
a pixel from a panchromatic image must be estimated from data at and around
the pixel. The method of determining the Max-Min texture measure is described
next.

3 Robert M. ilaralick. "Statistical and Structural Approaches to Texture," Prnceedingv o.1 the IEEk., Vol.
67, No. 5. May 1979.
4 Owen R. Mlitchell, (hares R. Myers, and William Boyne. "A Ma\-Min Measure for Image 'e\turc Ana
lysis. IhH Trans. Cnnput.. Vol. ('-25, April 1977.
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A rectangular window of gray shades centered over tile point in question
is specified along with a fixed set of threshold values. Four types of scan lines
are considered over the window, namely the set of horizontal lines, the set of
vertical lines, the set of left diagonal lines, and the set of right diagonal lines.
Essentially, a line of gray shades from any one of the four sets is selected along
with one of the NT threshold values T. A smoothing process, which is a func-
tion of the specific T, is applied to the data in order to remove small amplitude
changes so that only the significant extremes are retained and counted. The
extremes that texceed T are counted and summed over the specific set of lines.
Each of the four sets of lines will produce NT extreme counts. The next step
in the process of generating Max-Min texture vectors is to ratio the number of
extremes at one value of T to the number of extremes at the next larger value,
thus producing four (NT-I) component vectors where each component is a
nonnegative number less then, or equal to. one. The reason for this step is to
produce texture data that is invariant to the absolute number of extremes. There
should then be a window size of dimension NW that produces consistent texture
data in wlhich an increase in dimension does not improve consistency. This is an
init ortant consideration, since small windows produce better output resolution
and meqire less computing time than larger windows.

Maximum Likelihood Classification Rule * The maximum likelihood
rule as described in appendix B was used in this experiment for the following
reasons. The Baysian classifier (see appendix A) from which it was derived has
a logical and intuitive appeal. The specification of the multivariate normal popu-
lation in the Baysian rule rested on familiarity with the process as well as a certain
comfort derived from the Central Limit Theorem. Finally, the procedure is well
documented, and it lends itself well to the modifications employed in this experi-
ment.

The Max-Min algorithm described above produces four texture vectors, one
for each linear direction within a window. There are various ways the data could
be processed. For example, one direction could be chosen and used throughout.
This would reduce the compute time considerably. Also. the four texture vectors
could be averaged and the average vector characterized. This procedure would
not be as effective in the reduction of computing time, but areal texture would
be measured. Finally, the four texture vectors could be processed separately and
the final characterization derived from the four results. This procedure is the most
time consuming, but the algorithm is simple enough so that if it were proven
worthwhile, a hardwired device could be developed. The last approach was
selected and is described next.
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Consider any one of the four texture vectors. Instead of choosing the most
likely class as described in appendix B, choose the R most likely classes. This
was done in the following manner:

Produce the N decision values for each of the four directions.
Normalize the vectors of decision values, that is let

I - I I -)r (X), Ds(X). DNs. X)

S 1, 4 directions

N: Possible number of classes

The 0'(X) are nornalized versions of the decision functions described in
appendix B.

DiI5X) = N _.,

N
2 Dis(X)

i=lI

4-
Let = f and choose the R largest of the N components of f.

Normalize these data and produce the following output.

Cir: the rth most likely of the
i= I,N possibilities for R.

The weights P(Cir) will be regarded as probabilities in the relaxation scheme
described next.
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Relaxation Labeling 9 The relaxation scheme used in this experimen t
is anl application of a nonlinear probabilistic model to relaxation labelinig~
Consider a set of results from the classification process described. 'Fie output
for each of the processed pixels is ail R-tuple in which each component is mlade
Up Of a label C,, and anl associated Weight lP((> ),Where i I,\, possible
classifications ( labels) and r I 1,R most likely labels for thle specific point.
Since each of thle weights is greater than zero and since R 1 I. thle
wei-hts can be regarded as probabilites.

-Fhe vector of' probabilities is processed in parallel by reviewing each coin-
ponlent with respect to its neighbors. Modifications to thle p~robabilities are made
to reflect neighboring pixel information and to reflect u1ser-impjosed weights
and constraints. The eonstraints are realized by a user-defined relational matrix
that describes the compatibility of neighboring classes. The probability update
is expressed in the following formula:

= k (C~r~[ + q k (<C
pk C I ir f~~ I +qi()

I ir i l

G iR
qk(() =w a C- 1') j(C

I. iR: number of labels (classes)

k = I . K: iterations of the process

I =I , P: pixels to process

g =I , G: neighbors used in thle update

Wg : user assigned weights. Note that E , 1

a(CtC,):NxN compatibilityrimatrix.

5 Airiel Rosenfeld, Robert A. Hlummel and Steven A. Zucker. "Scene Labeling by Reiaxation Operation,"
IEEE Transacrions on SYstems. Man, and 'bcrnefics, Vol. SMC-6. No. 6, June 1976.
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The determination of the weights (We) and the compabibility values in
a('Ct are left up to the user. These inputs allow the user some control of the
iterative update. For example, if wi = 0 (weight of pixel under modification).
then the neighbors completely determine the classification. The compatibility
factors are numerical values between minus one and plus one. A value of plus
one for a (Ct, C.,) implies that classes Ct and C can occur together with
no problem; whereas, a value of minus one implies that the exi.tence of C t
at location I denies the existence of C ', at neighboring pixels. A ' alue of ,ero
implies that the existence of label Ct at location I has no bearing on tile
existence of C.1 at neighboring pixels.

The intention here is to use the relaxation labeling concept as a mcanS to
provide the computer with a larger view of the scene by relating derived data in
a rational manner. There are varigus ways that the algorithm can be modified.
It is expected that modification will come about as practical experience is ob-
tained. There are many aspects of the algorithm as defined above that need to
be tested. For example, using (I + q)O with a > I will speed up convergence:
howeler. the effect of distant points will not be felt if the number of iterations
is reduced. It should be noted that the compatibility matrix need not, and pro-
bably should not, be symmetric. It should also be noted that if the initial pro-
bability of a class is zero, then the algorithms as employed in this experiment will
never revise the probability, even if every neighbor of the point insists on that
classification.

NUMERICAL EXPERIMENTS

Text Regions 0 Ten digital subscenes (10242 x 8 bits) were extracted
from the Digital Image Analysis Laboratory (DIAL) library for the texture
analysis. The parameters of the taking geometry and of the scan procedure are
described in a previous research note. 6 The set of 10 subscenes is composed
of a near infrared exposure (IR) and a corresponding panchromatic exposure
(PANC) 'for each of 5 scenes. The 5 scene pairs are shown in figures 1 through
5.

6 Michael A. Crombie. An Evaluation of Conventional Correlation Methods When Matching Infrared Inagerv
to Panchromatic Imagery. U.S. Army Lngincer Topographic Laboratories, Fort Belvoit, VA .TL-0195,
August 1979. AD-A076 I 11.
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The portions of the subscenes selected for the texture analysis were de-
signated by rectangles. The scene content in each rectangular window was deter-
mined by looking at the IR scene on the DIAL display. Results of the visual
designations are presented below. A regular pattern of points (every 10 lines
and every 10 pixels) over each rectangular area was used to develop the texture
signatures.

SCENE A SCENE B

CLASS TYPE CLASS TYPE

I Building and Road I Heavy Forest

2 Gray Field 2 Scrub

3 Rough Field 3 Field, Building,
and Road

4 Heavy Forest 4 Dark Field

5 Light Field 5 Light Field

6 Light Forest 6 Light Forest

SCENE C SCENE E

CLASS TYPE CLASS TYPE

I Heavy Forest (Light) I Dark Field

2 Heavy Forest (Dark) 2 Light Field

3 Light Forest 3 Heavy Forest

4 Light Field 4 Scrub

5 Gray Field 5 Building and
Road

6 Light Forest

Is



SCENE H

CLASS TYPE

I Dark Field

2 Light Field

3 Scrub

4 Building and Road

Three window sizes were used to develop the texture signatures.

WINDOW GROUND FOOTPRINT (FEET)

9 x 9 26 x 26

15 x 15 46 x 46

21 x 21 66 x 66

The 15 threshold values used to develop the Max-Min features were:
1. 3, 5, 7, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36 and 39.

The Max-Min texture feature vectors (14 compontnts) were calculated
and stored on disc for a variety of analyses.

Numerical Results 0 Four kinds of numerical results were derived
from the texture features; namely component compression, divergence measures,
confusion matrices before relaxation, and confusion matrices after relaxation.

16



Component Compression * A principal component analysis of the
data was performed to determine whether a significant amount of information
contained in the 14-component Max-Min texture feature vectors could be ex-
plained by fewer components. Results from the 648 separate component anal-
yses are summarized in table 1.

TABLE I. Principal Component Results by Scene.

Sampling Window Size

9 15 21

PRINCIPLE COMPONENTS

SCENE 3 5 7 3 5 7 3 5 7

A
PANC 72.5 83.9 91.2 75.8 88.0 94.2 77.6 89.8 95.3
IR 73.1 83.8 91.2 75.2 87.2 93.8 75.9 88.0 94.1

B
PANC 73.9 84.2 91.2 75.0 87.0 93.4 75.7 87.4 93.4
IR 75.5 85.2 91.7 74.0 85.7 92.2 74.4 85.5 92.0

C
PANC 68.9 81.8 90.1 64.8 79.7 88.1 63.3 78.8 87.7
IR 70.3 82.3 90.3 66.7 81.3 89.6 67.9 82.1 89.7

PANC 73.8 84.6 91.6 74.7 86.7 93.3 71.4 85.5 92.8
IR 73.3 84.4 91.5 67.4 80.9 89.1 65.4 80.2 88.7

PANC 70.7 82.2 89.7 75.1 87.4 93.8 78.2 90.6 95.5
IR 71.4 82.8 90.4 74.7 86.1 92.9 77.1 89.2 94.8

The tabular entries are percentages of variation explained by the first 3, 5,
and 7 principal components. The results are organized by scenes, by the two
kinds of exposures, and by the sampling window size. The results from table
I were averaged over scene and presented in table 2. The results of table 2
show little variation over window size or exposure type.

TABLE 2. Principal Component Results.

9 Is 21

3 5 7 3 5 7 3 5 -7
PANC 72 83 91 73 86 93 73 86 93
IR 73 84 91 72 84 92 72 85 92

17



Divergence Measure 0 The amount of information, l(C1 : Ci), con-
tained in the N-dimensional vector X for discriminating in favor of class I
over class J is described in appendix C. Similarly, the amount of information
contained in X for discriminating in favor of class J over class I is i(C1 : C, ),
and by definition, J(Cj, C ) = I(C1 : Cj) + I(Cj: C,) is a measure of the dif-
ficulty of discriminating between class I and class J. J(C, Cj) is a nonnegative
number and is called divergence.

Large values of J(C1 , Cj) are indicative of strong discriminatory power,
whereas small values of J(C1 , Cj) indicate poor discriminatory power. The
purpose of the divergence analysis was to determine if a worthwhile relation
between classification error and the associated divergence could be developed so
that a variety of texture parameters could be evaluated without performing the
computing-intensive, maximum-likelihood evaluation and subsequent review of
the resultant confusion matrices.

Two measures of association were calculated to determine whether a
consistent relation between divergence and classification errors exists. The first
was the linear correlation coefficient RD E, which is a measure of the linear
dependence between divergence and classification error. The second was Spear-
man's rank correlation coefficient PD 1:' which is a measure of the degree of
correlation between rankings. This statistic is calculated from the difference in
rankings. The classification errors are ranked from 1 to M (smallest to largest).
The divergence values are also ranked from I to M (largest to smallest). In
both cases M is the number of combinations of the N possible classes taken
two at a time. A summary of the results is presented in table 3.

18
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TABLE 3. Classification Error Versus Divergence Statistics.

RD PD E

SAMPLING WINDOW SIZE

9 15 21 9 15 21

SCENE
A

PANC -0,41 -0.50 -0.53 0.39 0.51 0.70
IR -0.37 -0.33 -0.52 0.48 0.45 0.61

B
PAN(" -0.65 -0.58 -0.68 0.71 0.63 0.71
IR -0.12 -0.79 -0.63 0.23 0.74 0.64

C
PANC -0.62 -0.73 -0.62 0.72 0.92 0.96
IR -0.69 -0.77 -0.81 0.82 T87 0.94

IPAN(" -0.61 -0.78 -0.59 0.58 0.88 0.96
IR -0.45 -0.54 -0.35 0.49 0.88 0.95

H
PAN( -0.65 -0.92 -0.81 0.66 0.94 0.54
IR -0.50 -0.46 -0.59 0.43 0.26 0.26

Confusion Matrices Before Relaxation 0 The required statistical entities
needed to evaluate the decision functions described in the section on the Maxi-
mum Likelihood Rule were computed from the stored Max-Min texture features.
The derived population parameter estimates were used to classify the stored
Max-Min texture features by designating the most likely of the R = 3 most
likely classifications as the correct classification. The designated classifications
were compared to the known classifications in order to develop a matrix of hits
and misses. These results were modified to produce the confusion matrices given
in appendix D. The 10 sets of confusion matrices are organized first by scene
and then by exposure type. Each of the 10 tables of data is composed of 6
subtables organized by sampling window size and by maximum likelihood re-
suits and by relaxation results.
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Confusion Matrices After Relaxation 0 The relaxation process described
in the Relaxation Labeling section was applied to the derived vectors of most
likely classes and associated probabilities. The following values were used to
run the algorithms:

R = 3 most likely classes

K = 5 iterations

G = 25 neighbors used in the update

I it =  -t
a (QC7) 

0 if t

A 5 x 5 window centered over the point to be updated defined the G
25 neighbors. In this example, the point to be modified was used in the update.
The vector of probabilities associated with the center point was given a weight
of' W = 1/3. Each of the vectors of probabilities associated with the eight nearest
neighbors was given a weight of W = 1/24. Each of the vectors of probabilities
associated with the 16 next nearest neighbors was given a weight of W = 1/48.
The weighting procedure was modified to handle the situation when points
along the boundary of derived data (or points adjacent to the boundary) were
updated. The results of the relaxation are presented in appendix D. The or-
ganization of the -,sults is identical to those described in the previous section.

DISCUSSION

The training areas outlined on the scenes (see figures I to 5) were de-
fined on the IR imagery by mathematicians, not experienced photo interpreters.
For example, heavy forests were distinguished from light forests, and these
from scrub, purely from appearance. A subjective evaluation of the density of
trees was the criterion used. The same was true when for Scene C. heavy forest
(light) and heavy forest (dark) were characterized and distinguished from
light forest. Dark and light pertained to tone in the heavy forest descriptions.
It was noted that the two appeared more dissimilar on the IR than on the
PAN(', yet the classification scores were similar, especially when Max-Min texture
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features were extracted using 21 x 21 windows. It was also noted that the dis-
tinction between a light field and a dark field identified on the IR was less
pronounced on the PANC'. Again, the classification performances for the two
exposure types were comparable, which indicates a difference in Max-Min texture
between light and dark fields. It was noted after the experiment was well under-
way that the training region around the buildings and road (class 3) on Scene
B was too large. The rectangle included too large an area of light and dark fields.
The resultant poor classification of this area in Scene B is noticeable, especially
when compared to results for small window sizes from the other scenes.

The purpose of the initial experiment in texture analysis was to evaluate
the Max-Min texture signature as a means to sort out broad areas. such as forests
and fields, and to isolate cultural detail from surrounding natural detail. It is
not expected that texture will provide enough information to distinguish among
the various DLMS cultural features. It does appear from the results to date
that texture can isolate structures for subsequent identification by a photo
interpreter on a display device. This is especially true if the preliminary results
from the classification exercise are refined by relaxation. In fact, the relaxation
process as shown in the confusion matrices presented in appendix D consider-
ably reduced misclassification and false alarms.

The results to date are not extensive over scene types, scale, or exposure
type. Five scenes were tested (actually subsets of those scenes) and those scenes
were generally alike. Two exposure types (near infrared and panchromatic)
with near-identical scales (1:70,000) were used. Three different window sizes
were evaluated. The quality of the classification results and the quality of the
relaxation results noticeably improved as the window size increased. It should
be noted that the computing time lengthens as the window size increases and that
the resolution of boundaries between, say, fields and forests will diminish as the
window size increases. Owing to the lengthy computer runs associated with this
experiment, only one set of thresholds was tested, namely that given in the
section on test regions.

Two statistical studies were performed during the course of the experiment.
The first was a compression study wherein the method of principal components
was used to explain the percentage of variation accounted for by the first three.
by the first five, and by the first seven principal components. Results averaged
over scene, over exposure type, and over window size show that 72 percent of
the variation is explained by the first three components, 85 percent by the
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first five components and 92 percent by the first seven components. It should
be noted that these results pertain to individual subscene statistics rather than to
overall scene statistics. Classification results were not evaluated using the reduced
texture signatures owing to the lack of time. Tests using compressed texture
vectors should be conducted on subsequent experiments, since it is impossible
to estimate results using the percentage of explained variation as a predictor.

Ain unsuccessful attempt was made to use the statistical measure of diver-
gence as a measure of clfectiveness for comparing one set of texture parameters
to another. The correlation values RI) j. presented in table 3 indicate a negatike
correiation (as divergence increases, classification error decreases); however.
the values do not indicate a strong linear trend. Several sets of data were plotted
to determine if a functional relation other than a linear one existed. Such a
relation was not apparent from the plots. The results were ranked as described
in the section on l)ivergence Measure to determine whether there was a consist-
ency between the two sets of results. Only those values underlined in table 3
refute (at the I percent confidence level) the hypothesis that the two sets of
rankings were random. Generally. there is some support for a relationship be-
tween divergence and classification error, but not enough to warrant doing
away with the classification tests.

The Max-Mm texture measure was tested and found to he an excellent
signature for scene classification, especially when relaxation labeling processes
are used to refine the classification results. The necessity of using regions about
the point in question to estimate texture, rather than estimating texture from
several pixel component values, as is done in LANI)SAT. causes a loss of re-
solution in determining textural boundaries. The loss in resolution becomes more
pronounced as the sampling window increases in size. The results of the tests
to date indicate that a 9 x 9 window is too small for the problem at hand. The
smaller windows, although more precise for determining textural boundaries.
tend to measure the texture of the trees rather than texture of the forest.

[lie loss in resolution at textural boundaries caused by largem sampling
windows can be recovered by employing three algorithms in a cooperative mode
I ) digital stereo compilation. (2) edge detection (thresholded gradient meth-

od), and (3) texture classification. In practice, stereo images exist that can be
used to extract two estimates of texture for each point. '[he procedure is feasible
if the process is executed along with the stereo compilation exercise. In the same
manner, the edge algorithm can be used to produce two corresponding sets of
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edge data. The processes can be integrated and controlled through known exterior

data relating the stereo imagery and by relational statements through combined

relaxational processes. For example, local slope infornation derived from X-

parallax data can be used to modulate the classification process and vice versa.

CONCLUSIONS

1. Max-Min is a practical measure of image texture that needs further

investigation.

2. Relaxation labeling appears to be a valuable method for removing
noise and ambiguities from derived classifications.

3. Ldge detection methods should be used. along with classifications

derived from texture, to define boundaries between broad areas.

4. Texture can be used to isolate cultural detail from natural detail.

5. Divergence does not appear to be a worthwhile predictor for precise

classification performance.

6. Relaxation methods should be extended to encompass edge enhance-
ment, elevation refinement, and texture classifications in a cooperative mode.

23
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APPENDIX A.

Bayes Classifier 0 Regard the classification process as part of a two-
person, zero-sum game G = (U, V, L), where U is an (N x I) vector of strat-
egies for the first player, V is an (N x I) vector of strategies for the second
player. and L is an (N x N) loss function. If the first player (Mother Nature)
chooses a class ci e U and if the second player (photo interpreter) choose a
classification cj e V, then the second player loses I ij. Suppose the first player
selects class ci based on the prior probability p(ci) and produces an (M x I)
Max-Min texture vector X. The posterior probability that X belongs to class
c, is p(ci1 /X). If the unfortunate second player decides that X comes from
cj, he loses I 0. From the second player's point of view, the pattern vector X
could have come from any one of the N possible classes. His expected loss for
assigning the signature to the jth class is

N

r, (X) =I. p(ci/X)
i=lI

Suppose the second player (numerical classification process acting in
place of the photo interpreter) calculates r, (X): j = 1, N and assigns the pattern
R to the class with the smallest ri (X), If this is done for all X. then the total
expected loss with respect to all decisions will be minimized. Such a classifier
is called a Bayes Classifier.

The Bayes formula for posterior probability is

p -c/X) = p(ci) P(X/c i )

p(X)

where

N

p(X) = Z p(c ) p(X/ck).
k= I
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Teprobability p(R/c1) is the conditional probability of' X, given that
C, has occurred. p(c~iX) is called the likelihood function of class Ci. Substitute
the likelihood tunction into the loss function r (X) and get

r, (R) = lij p(c1 p(k/c1 ).

Note that p(X) is a common factor in r1(X) for all j and is dropped.
In general. the pattern X is assigned to class ci if ri(X) < rj(X) for I , N
and j/Xi.

SupJpose there is no loss for a correct classification and a unit loss for a
misclassification, then Iii =0 for all i I .N and lij I otherwise. P~ut these
values into r()and got

N
r1(R) = p(cd p(X/c1 ) - P(c1) P(R/cj)

YR) = p(R) -P(c.) p(Y/c.).

This says to assign the observation to class ci if

P (X) - p(c) p(Oz/ci) < p (X) - p(Cd)p (R/Cj)

for all j =l, N and jXi.

This relation is written in its final form as
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APPENDIX B.

Bayes Classifier for Multivariate Normal Signatures 0 From appendix
A, the Bayes classifier for the special case of no loss for a correct call and unit
loss for a miscall is

p(c i ) p( '/cid > p(ci) p(0 /cj).

This relation says to assign tile texture vector X to class ci if the in-
e(luality holds for all j X i. The probability P(Ck ) is the prior probability of the
k ' class, and the probability p(X/ck) is the conditional probability of X,
given that the kth class has occurred.

The classification problem has been reduced to calculating N decision
functions di = p(c i ) p(X/c i ) and assigning X to the class associated with the
iargest di . Assume that texture signatures are distributed according to the
Multivariate Normal distribution

p(X/c )  
e - (X .U -)

(27) N / 2  1; i I1/%

where i i and 1i are the mean and covariance matrix of the distribution.

The decision functions can be simplified by taking natural logarithms of
the functions and using the logarithms as decision functions. This is a valid
operation since the log function is a monotonically increasing function.

In(d1 ) = inp(ci) + In p(X/c i)
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I 1(d 1) =In p(cd N Inv 21 nI

The value unir does not depend on i and can be ignored. The

decision functions turn out to be

d= Inlp(c 1 ) -Yf '-In 1 1- '/-,(R -,u,) (-Mj)

Note that the set of decision functions, di is comnposed of constant,
linear, and quadratic terms in X, which means that the miultivariate normal
Baysian classifier places, at most, a second order surface between pairs of texture
classes.
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APPENDIX C

Divergence 0 Divergence is a measure of thle di fficulty ot' distinguishing
between two hypotheses 11, and 112. 7Note that the hypotheses can be re-
garded as "belonging to Class I or belonging to ('lass 2I" Suppose tile pattern
vector X can occur in Conjunction with two mutually exclusive events c
and c2 . From Bayes' theorem

P(c 1 /X) c1 )*(Xc
P(c1  p(X/c 1  + p(c, ) l(X/c2

p~c~ ~p(C7 )*p( X/c,

- (c1  p(R/c, ) + ptc, )*p( X/c2

in d

P(c1 X ptc1 ) *p(X/c I

p(c2 /X) p(C2 ) pI(X/c,)

Take the logarithm of both sides of' the eqluality and get

log p(X/c 1  log p(c I / X) log p(c1
p(x/c2 ) p(c, /R) p(c,

Consider thle right side of' this last eqjuality.

pAc 1 /X) is the odds in favor of c, over c, given that K has occurred.
p(c, / X)

7 Solomnon K'uIlback, hilw(?inatiu,, Theorr and~ .tatisics, Do~ver Pubications%. Inc.. Now York. M 98.
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tflc is the odds in favor of c, over c, before the observation X is made.

p(c 2 )

Then the logarithm of the likelihood ratio is defined as the information contained
in the observation X for discriminating in favor of c, over c2 . The average
information for discriminating in favor of c, over c2 is

f. _ p{X/cl I -

1(1:2) J p(X/c 1 ) log p(-/C2) dX.
f ~ P(X/c 2)

Suppose the X is from a multivariate normal distribution and that natural
logarith,,is are used, then

iv) I
1(1:2) =  /21n + '/T, 2; 1 2 1

+ 12T Z2 (Ul -5 2 ) (C1  - ,).

The details of this derivation can be reviewed in ('hapter 0 of Kullback.

Note that Tr pertains to the trace (sum of diagonal elements) of a matrix.
There are several worthwhile properties of 1(1:2) given in the reference. For
example, if X and Y are independent observations, then the amount of in-
formation tor discriminating in favor of c, over c2 is 1(1 :2;XY) 1(1 :2AX) +
1(1 :2:Y).

If 1(1:2) is the amount of information in the observation X for discrim-
inating in favor of (lass c, over ('lass c2 , then by a similar argument. 1(2:1 I

is the amount of information in X for discriminating in favor of c, over c.

8
Solomon Kullback, Inlformation 7"heorY and Sialistics. Dover PublicationsInc.,Ne, York. 1968., hapter 9.
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1(2.1) = pX/c 2 ) log d(X/c2 )

or

1(2:1) = -fp(X/C2 ) log P(c 1  dX
P( X/c2 )

Divergence is defined to be

J(I, 2) 1(1:2) + 1(2:1)

or

.1l, 2) = ((X/ci) - P(X/c 2 ) log p/c2 A.

Divergence is a measure of the difficulty of discriminating between ('lass

c and ('lass c2. Note that from symmetry J( 1. 2 = J(2, I I' the obser-
vation X is from a multivariate nonnal distribution, then

J(I, 2) = 2 ) ( -i -2;) 2 )'Zr( +2 1 - 1 -

The details of this deviation can be reviewed in Chapter 1) of Kullback. 9

9Sohmon Kullback. hinormatiu Thrh,rv and Statistics. Dover Iublication.in...New York, 1968.(hap'ter 9.
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The following properties of J(l, 2) are derived there:

0 If X and Y are independent obserations, then
J(l, 2,X,Y) = J(,2;X) + J( 1,2Y).

S J(, 2) > 0.

* The above properties imply that

J(l'2;XX ... XN,' N + I )  > J(l'2;Xi1 X2 ..... I N

The last property says that new observations can be evaluated for their discrim-
inatory power.

Large values of J( , 2) indicate more power in discriminating between
two classes. This can be seen in the following example. Suppose X, = 12 = :
and that a measure of the discriminatory power of an observation for distin-
guishing between fii and 52 is desired. In this case,

J(l,2; i) = (i1 - u2 ) 2;-l(51 - U2

and in the case of univariates,

(u1 - u 2 2

J(l, 2: u ) -

2  2

a
2

If the population means are nearly equal, then there is little discriminatory
power in one observation. If the means are very different, then there is more
discriminatory power in a single observation, and J(l, 2, u) is also larger.
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APPENDIX D.

Confusion Matrices 0 The classification and relaxation results froii the
numerical experiment are listed here. The (ij)th entry ineach table refers to the
percentage of times the ih class was classified as the jtl' class. For example,
consider the two (t x 6) matrices of table D1 that pertain to window size 15.
The first matrix M pertains to initial results from maximum likelihood, and the
seCOlld matrix R pertains to relaxation results. The entry m 33 

= 6:.5 indicates
that 0 1.5 percent of class 3 was called correctly, whereas m3 6 10.6 says
that 10.0 percent of class 3 was called class 6. Similarly. m 66 =0.2 says
that 60.2 percent of class 6 was called correctly, whereas ni63 3.7 says that
3.7 percent of class 6 was called class 3. There was a total misclassification
error between these two classes of 14.3 percent. The modified results after
relaxation can be determined by reviewing the corresponding elements of the R
matrix.
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